Overexpression of Superoxide Dismutase Protects Plants from Oxidative Stress (Induction of Ascorbate Peroxidase in Superoxide Dismutase-Overexpressing Plants).
نویسندگان
چکیده
Photosynthesis of leaf discs from transgenic tobacco plants (Nicotiana tabacum) that express a chimeric gene that encodes chloroplast-localized Cu/Zn superoxide dismutase (SOD+) was protected from oxidative stress caused by exposure to high light intensity and low temperature. Under the same conditions, leaf discs of plants that did not express the pea SOD isoform (SOD-) had substantially lower photosynthetic rates. Young plants of both genotypes were more sensitive to oxidative stress than mature plants, but SOD+ plants retained higher photosynthetic rates than SOD- plants at all developmental stages tested. Not surprisingly, SOD+ plants had approximately 3-fold higher SOD specific activity than SOD- plants. However, SOD+ plants also exhibited a 3- to 4-fold increase in ascorbate peroxidase (APX) specific activity and had a corresponding increase in levels of APX mRNA. Dehydroascorbate reductase and glutathione reductase specific activities were the same in both SOD+ and SOD- plants. These results indicate that transgenic tobacco plants that overexpress pea Cu/Zn SOD II can compensate for the increased levels of SOD with increased expression of the H2O2-scavenging enzyme APX. Therefore, the enhancement of the active oxygen-scavenging system that leads to increased oxidative stress protection in SOD+ plants could result not only from increased SOD levels but from the combined increases in SOD and APX activity.
منابع مشابه
Overexpression of Superoxide Dismutase Protects Plants from Oxidative Stress' lnduction of Ascorbate Peroxidase in Superoxide Dismutase-Overexpressing Plants
Photosynthesis of leaf discs from transgenic tobacco plants (Nicotiana tabacum) that express a chimeric gene that encodes chloroplast-localized Cu/Zn superoxide dismutase (SOD+) was protected from oxidative stress caused by exposure to high light intensity and low temperature. Under the same conditions, leaf discs of plants that did not express the pea SOD isoform (SOD-) had substantially lower...
متن کاملInvolvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress.
In order to understand the role of cytosolic antioxidant enzymes in drought stress protection, transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants overexpressing cytosolic Cu/Zn-superoxide dismutase (cytsod) (EC 1.15.1.1) or ascorbate peroxidase (cytapx) (EC 1.11.1.1) alone, or in combination, were produced and tested for tolerance against mild water stress. The results showed that the sim...
متن کاملEnhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts.
A chimeric gene consisting of the coding sequence for chloroplastic Fe superoxide dismutase (FeSOD) from Arabidopsis thaliana, coupled to the chloroplast targeting sequence from the pea ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, was expressed in Nicotiana tabacum cv Petit Havana SR1. Expression of the transgenic FeSOD protected both the plasmalemma and photosystem II against...
متن کاملOverexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana.
To evaluate the physiological importance of chloroplastic ascorbate peroxidase (CHLAPX) in the reactive oxygen species (ROS)-scavenging system of a euhalophyte, we cloned the CHLAPX of Suaeda salsa (SsCHLAPX) encoding stromal APX (sAPX) and thylakoid-bound APX. The stromal APX of S. salsa (Ss.sAPX) cDNA consists of 1726 nucleotides including an 1137-bp open reading frame (ORF) and encodes 378 a...
متن کاملOverexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis
Superoxide dismutase (SOD) is a very important reactive oxygen species (ROS)-scavenging enzyme. In this study, the functions of a Cu/Zn SOD gene (SaCu/Zn SOD), from Sedum alfredii, a cadmium (Cd)/zinc/lead co-hyperaccumulator of the Crassulaceae, was characterized. The expression of SaCu/Zn SOD was induced by Cd stress. Compared with wild-type (WT) plants, overexpression of SaCu/Zn SOD gene in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 103 4 شماره
صفحات -
تاریخ انتشار 1993